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Abstract: This study provided important insights into new, real time, control measures at reducing larval, vector density 

[Macro Seek and Destroy (S&D) and blood parasite level [Micro S&D] in a malaria treated and suspected intervened 

population. Initially, this study employed a low-cost (< $1000) drone (DJI Phantom) for eco-geographically locating, water 

bodies including natural water bodies, irrigated rice paddies, cultivated swamps, ditches, ponds, and other geolocations, which 

are among the common breeding sites for Anopheles mosquitoes in Gulu district of Northern Uganda. Our hypothesis was that 

by integrating real time, scaled up, sentinel site, spectral signature, unmanned aerial vehicle (UAV) or drone imagery with 

satellite data using geospatial artificial intelligence [geo-AI] infused into an iOS application (app), a local, vector control 

officer could retrieve a ranked list of visually similar, breeding site, aquatic foci of An.gambiae s.l. arabiensis s.s. fuentsus s.s. 

mosquitoes, and their respective district-level, capture point, GPS indexed, centroid coordinates. We real time retrieved (hence, 

no lag time between seasonal, aquatic, Anopheles, larval habitat, mapping and treatment of foci) each georeferenced sentinel 

site signature which was subsequently archived in the drone dashboard spectral library using the smartphone app. Each 

georeferenced, UAV sensed, capture point was inspected using a mobile field team (i.e., trained local village residents led by a 

vector control officer) on the same day the habitats were geo-AI signature mapped, spatially forecasted and treated. A second 

hypothesis was that a real time, environmentally friendly, habitat alteration [i.e., Macro S&D] could reduce vector larval 

habitat density and blood parasite levels in treated and not suspected malaria patients at an entomological intervention site. A 
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third hypothesis was: timely malaria diagnosis and treatment [Micro S&D] is associated with low population parasitemia and 

lower malaria incidences. In 31 days post-Macro S&D intervention, there was zero vector density, indoor, adult, female, 

Anopheles count as ascertained by pyrethrum spray catch at the intervention site. After a mean average of 62 days, blood 

parasite levels revealed a mean 0 count in timely diagnosed suspected and treated malaria patients. Implementing a real time 

Macro and Micro S&D intervention tool along with other existing tools [insecticide-treated mosquito nets (ITNs) and indoor 

residual spraying of insecticides (IRS)] in an entomological district-level intervention site can lower seasonal malaria 

prevalence either through timely modification of aquatic, Anopheles, larval habitats or through precisely targeted larvicide 

interventions. 

Keywords: Drone, Seek and Destroy, ArcGIS, Artificial Intelligence iOS, Anopheles 

 

1. Introduction 

Current efforts use Unmanned Aerial Vehicles (UAVs, also 

called drones) to map habitats of malaria, mosquito, 

Anopheles [1, 2] but are unable to scale broadly from a 

sentinel site, [e.g., seasonal, hyperproductive, capture point, 

larval, aquatic foci] to complete land footage across any 

malarious, district-level, suitable region of interest [e.g., fresh 

or salt-water marshes, mangrove swamps, furrows, rice fields, 

grassy ditches, the edges of streams and rivers, temporary 

rain pools, pit latrines etc.]. The scalability process would be 

tremendously time-consuming and expensive, especially 

considering that a typical drone can only fly for 

approximately 30 minutes, covering approximately three 

acres before requiring recharging. Overlapping photos 

collected of potential, georeferenced, sentinel site, Anopheles, 

larval habitat, capture points [e.g., deteriorating infrastructure 

such as broken water pipes, poorly maintained drains, 

culverts, market gardens/urban agricultural sites, pools at 

construction sites, tire tracks on unpaved roads, low lying 

areas that are liable to flooding, hydrants, catch pits etc.] 

during a drone flight can be used for identifying larval 

habitats during the dry season, however, processing the 

imagery takes two to three hours. Real time larval control is 

of paramount importance in the reduction of malaria vector 

abundance and subsequent disease transmission reduction [3]. 

Drone imagery alone is not ideal during rains or clear sky's 

(drones are flown under clouds). Real time, sentinel site, 

UAV mapping, forecasting, and treating only dry, seasonal, 

breeding site, aquatic, larval habitats of Anopheles would not 

lower district-level malaria prevalence. Since unknown, 

sentinel site, capture point, Anopheles, breeding site, habitat 

geolocations cannot be mapped or treated during pre-rain and 

rainy seasons; there currently is no ability to implement year-

round control strategies [i.e., Micro and Macro S&D] as part 

of a real time Integrated Vector Management (IVM) program 

in a malarious district. Integrated vector management (IVM) 

is a rational decision-making process that encourages optimal 

use of resources for efficient, cost-effective and sustainable 

vector control [4]. 

To date most examples of integrated control targeting 

malaria have been unanticipated consequences of vector 

control, rather than planned strategies that aim to maximize 

the efficacy and take the complex seasonal ecological and 

biological interactions between land cover and development 

of seasonal, aquatic, larval habitat, breeding sites of 

Anopheles. Conventional UAV habitat monitoring methods 

are time-consuming and labor-intensive, necessitating new 

techniques to provide faster scaling up of capture point 

measurements for detection of Anopheles larvae and the 

collection of epidemiological, eco-hydrogeological, 

topographical, and biogeographical capture point, spectral 

temporal [henceforth spectrotemporal], land use land cover 

[LULC] change data [e.g., from pre-rain, pre-flooded, rice 

paddies to dry seasonal intermittently shade canopied, post 

harvested, mature tillers]. Doing so would allow for real time 

sampling intensity mapping, sentinel site, signature 

forecasting and treating, georeferenceable, aquatic, 

Anopheles, larval, breeding site, aquatic foci throughout the 

seasons. 

Combining artificial intelligence (AI) machine learning 

classifiers and interpolative, ArcGIS [geo-AI] in an 

interactive, dashboard configurable, web-friendly, 

smartphone application (app) can aid in optimally scaling up 

sentinel site capture points for predictively mapping 

unknown, district-level, Anopheles, larval habitat, seasonal, 

occurrence, abundance and distribution. By employing real 

time, UAV retrieved, capture point, sentinel site, wavelength, 

reflectance datasets of seasonal, imaged, LULC classified, 

Anopheles larval habitat characteristics [e.g., water situation 

(turbid or clean, stagnant or running), substrate type, (e.g., 

moist or dry) site type (man-made or natural), sunlight 

situation, site situation (transient or permanent, with or 

without vegetation) etc.] a georefereceable Red Green and 

Blue (RGB), signature may be generated employing geo-AI 

technologies infused into an iOS app. Spectral signature is 

the variation of reflectance or emittance of an object with 

respect to wavelengths (i.e., reflectance/emittance as a 

function of wavelength) [5] which may be interpolated in 

ArcGIS to geolocate unknown objects or materials of an 

object [e.g., sentinel site, capture point, Anopheles, larval 

habitat breeding site, seasonal, aquatic foci]. In the 

mathematical field of numerical analysis, interpolation is a 

type of estimation, a method of constructing new data points 

based on the range of a discrete set of known data points [6]. 

This protocol has been employed to identify the aquatic 

sources for Black Fly larvae and pupae in West and East 

Africa (Cameroon and Uganda, respectively) [7] as well as 

the potential geolocations for immature (larval) habitat 

sources of Chrysop species the vector of Loa Loa and the 
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source locations for container species of mosquito, Aedes 

aegypti and Ae. albopictus in a county mosquito abatement in 

Florida USA [8]. Since these model systems are built on 

spectral signatures of habitats and employ a real time IVM 

system of geolocating those areas where seasonal, vector 

arthropod, larval habitat population is the most concentrated, 

immobile and accessible, the method has several 

ramifications regarding its biological utility as a real time 

tool for surveillance, monitoring and the direction and 

implementation of control applications by prioritization of 

nuisance. The sites in question could be specifically 

identifiable by georeferenced capture points and 

subsequently scaled up and treated via real time, dashboard 

technology, or by standard mosquito operational tactics 

depending on the site's landscape. In addition, this system 

could also provide the specific geolocation for adult 

emergence forecasting the where, when, and time to initiate 

an adult control operation. Thus, individuals would be treated 

before they disperse, and when the adult population is highly 

concentrated pre-dispersal. 

Drone dashboard video data has the ability to map 

seasonal, georeferenced, LULC classified, capture point, 

aquatic, Anopheles, larval habitat, RGB indexed, spectral 

signature, sentinel sites in real time. Machine learning and 

geo-AI can subsequently train dashboard tools to solve 

complex spatial problems such as scaling up a georeferenced, 

capture point, LULC, classified site for identifying district-

level, unknown, larval habitats using UAV sensed, Anopheles, 

sentinel site, seasonally indexed, capture point, RGB 

signatures, and high-resolution satellite data. 

Here we assumed geo-AI technologies could provide 

important advantages for seasonal, UAV capture point, 

signature, entomological, prognosticative modeling unknown 

district-level, Anopheles, larval habitat geolocations by 

incorporating large, LULC classified, empirical datasets of 

real time, archived, aquatic, seasonal, sentinel site, RGB 

signatures in a web-configurable smartphone app. We 

assumed that by employing a variety of formats; 

computational efficiency; flexibility in algorithms and 

workflows to accommodate relevant characteristics of 

environmental processes including spatial nonstationarity; 

and scalability to model previously, unknown, seasonal 

Anopheles breeding sites across different, district-level, 

geographic area we would be able to implement a real time 

IVM. Our assumption was that geo-AI technologies infused 

into an intercative smartphone app could produce effective 

machine learning models by incorporating spatial data and 

geolocation-infused algorithms for finding, unknown, 

district-level, natural sites or clusters of Anopheles based on 

spatial distribution of stochastically interpolated, RGB 

indexed, seasonal aquatic, larval habitat, capture point, 

signatures and then treat them. We employed sentinel site 

signature reflectance wavelength similarities [vegetation, 

turbid water pixels] for seasonally classifying satellite sensed, 

sub-meter resolution, capture point LULC data in an iOS app 

for improving the scalability of a spectrotemporal district-

level, UAV, vulnerability model. Consistent with that, the 

major innovation in this project is the potential scalability 

afforded through a combination of the geo-AI object-based 

object detection algorithms in an interactive, configurable, 

smartphone app for real time, video analog and satellite 

mapping grid-stratifiable, geolocations of unknown district-

level, georeferenced, aquatic, Anopheles, larval habitats from 

a single, RGB indexed, capture point, seasonal signature, and 

subsequently treating the interpolated, field verified 

individual, breeding sites or clusters using real time IVM 

tools [e.g., web-configurable smartphone apps for Macro 

S&D targeted drone larviciding]. 

Advances in computer vision have made it possible to get 

credible intelligence from UAV and satellite imagery using 

geo-AI techniques such as Deep Learning in ArcGIS. For 

example, ArcGIS Pro allows the usage of machine learning 

classification [e.g. Random Forest (RF)] classification 

algorithm] methods to classify real time, sentinel site, vector 

arthropod, seasonal archived, UAV and/or remotely-sensed, 

RGB, signature imagery. Random Forest ensemble models 

are made of many decision trees using bootstrapping, random 

subsets of features, and average voting to make predictions 

[9]. Here the improved ability of multispectral sensors and 

the statistical and machine learning computational 

geoprocessing tools in ArcGIS Pro provided an essential real 

time, sensing data resource for optimizing spatial data 

visualization of UAV retrievable, seasonal, quantitative, 

thematic information, [e.g., marshy land cover of a 

georeferenced, semi-permanent, sentinel site, aquatic, An. 

funestus larval habitat,) employing a web-configurable, 

interactive, smartphone app. Subsequently we scaled-up the 

RGB indexed databases of seasonal, sentinel site signatures 

and the capture point’s grid-stratifiable, LULC classifiable, 

habitat objects using geo-AI intelligence in the app for 

mapping unknown, Anopheles, district-level, larval, breeding 

sites for implementing real time IVM. For example, one of 

the objectives of this research was to construct a real time 

UAV system where a query video is infused into an iOS for 

retrieval of a ranked list of visually similar, classified, land 

cover, grid-stratified, Anopheles habitats by differentially 

corrected GPS coordinates employing the interactive 

dashboard app. A vector arthropod Differential Global 

Positioning System (DGPS) [10] is an enhancement to the 

Global Positioning System (GPS) which provides improved 

habitat geolocation accuracy, in the range of operations of 

each system, from the 15-metre (49 ft) nominal GPS 

accuracy to about 1–3 centimeters (0.39–1.18 in) [11]. The 

sensitivity and specificity of the video analog signals at 

identifying and scaling up multiple, land cover, seasonal, 

grid-stratifiable, LULC classifiable, aquatic, Anopheles, 

larval habitat, RGB sentinel site, signatures was field 

validated. We assumed that the iOS app would yield data 

approximation, peak sharpening, non-linear smoothing, and 

all manner of hybrid schemes in a principled way by a 

deliberate choice of different geo-AI algorithms for optimally 

seasonal mapping, unknown, breeding site, district-level, 

Anopheles, aquatic, foci based on a scaled-up, UAV sensed, 

real time, retrieved, RGB sentinel site, satellite signature 



 American Journal of Entomology 2021; 5(4): 92-109 95 
 

within an interactive smartphone app framework. 

The field of machine learning is broad, deep, and 

constantly evolving. ArcGIS is an open, interoperable 

platform that allows the integration of complementary 

methods and techniques in several ways: through the ArcGIS 

API for Python, the ArcPy site package for Python, and the 

R-ArcGIS Bridge. This integration empowers ArcGIS users 

to solve complex problems by combining powerful built-in 

tools with any machine learning package required—from 

scikit-learn and TensorFlow in Python to caret in R to IBM 

Watson and Microsoft AI—while benefiting from spatial 

validation, geoenrichment, and visualization of results in 

ArcGIS [12]. We assumed that the combination of these 

complementary packages and technologies within a real time, 

web configurable, iOS, interactive platform, would allow for 

non-heuristically optimizing signature feature identification 

and seasonal, LULC pattern recognition of georeferenced, 

sentinel site, real time, UAV imaged, Anopheles, larval 

habitat, aquatic foci. We further assumed that a vulnerability-

oriented, district-level, scaled-up, georeferenced, capture 

point, RGB indexed, stochastically interpolated, geo-AI 

constructed, sentinel site, signature, seasonal, grid-stratified, 

LULC map might be constructed in the smartphone app for 

implementing real time IVM strategies [i.e., Maco and Micro 

S& D] for treating previously unknown, district-level, 

individual, or clusters (i.e., “hot spots”) of breeding site, 

Anopheles, larval habitat, aquatic foci. 

Here we constructed, real time, deep learning, convolution 

neural network,[CNN], signature models which were 

integrated with ArcGIS Pro employing real time, sentinel site, 

object detection algorithms in the smartphone app for 

seasonal, georeferenceable, LULC mapping specific, 

Anopheles, larval habitat, capture point, attribute features 

[e.g., levels of intermittent, canopy cover of a sentinel site, 

commercial grassy, roadside ditch]. We did so to optimize 

seasonal, sentinel site, UAV sensed, RGB signature, image 

classifications of unknown, seasonal, district-level, 

Anopheline, larval habitat, breeding site, aquatic foci in the 

dashboard, configurable, interactive iOS app for 

implementing district-level, real time IVM control strategies 

[e.g., targeted, drone larviciding of a georeferenced, scaled-

up, field verified, post-flooded, household, vehicle rut or 

domestic animal hoof print, breeding site aquatic foci using 

high-resolution satellite data [i.e., WorldView (Wv)-2, 46, 

centimeter resolution, LULC data]. CNN is an algorithm for 

image classification and typically comprises of convolution 

layers, activation function layers, pooling (primarily 

max_pooling) layers to reduce dimensionality without losing 

a lot of LULC attribute features [13]. Convolutional neural 

networks are composed of multiple layers of artificial 

neurons, which are mathematical functions that calculate the 

weighted sum of multiple inputs and predicted outputs using 

an activation value [14]. Based on a real time, stochastically 

interpolated, spectrotemporal dependent, UAV sensed, 

sentinel site, georeferenceable, satellite signature, in an 

activation map, we were confident that the classification 

layer in an interactive, web-friendly, configurable, iOS app 

could output a set of confidence scores which could be 

specified based on how likely the image belongs to a "class." 

[e.g., grid-stratified, LULC classified, cover where 

Anopheles mosquitoes breed such as ground pools, small 

streams, freshwater marshes, forest pools, paddy fields, etc]. 

We also assumed that a wayward, sentinel site, UAV imaged, 

georeferenced, Anopheles, larval habitat signature, 

interpolation, forecast, vulnerability, LULC map might be 

created in a interactive smartphone app which could allow 

real time spot targeted treatment [Macro S & D] of a field 

verified, district-level, seasonal, aquatic, larval habitat, 

Anopheles foci from a scaled up, capture point, using high 

resolution satellite data. 

Our approach is based on a region-based convolutional 

neural network (R-CNN) embedded in an iOS interactive app. 

Region Based Convolutional Neural Networks (R-CNN) are 

a family of machine learning models for computer vision and 

specifically object detection. We successfully merged a 

region proposal network (RPN) and Fast R-CNN [i.e., a 

machine learning classifier] within a dashboard, smartphone, 

interactive app to build on archived, datasets of real time, 

UAV sensed, georeferenced, capture point, seasonal, aquatic, 

Anopheles, larval habitat, RGB sentinel site, signatures by 

classifying grid-stratifiable, LULC capture points (e.g., edges 

of streams and water puddles on drying streambeds, agro-

pastureland ecosystem, community tap foci etc.) Mask R-

CNN [14] and the architecture of Faster R-CNN [15] were 

employed for identifying georeferenceable, seasonal, aquatic, 

Anopheles, larval habitat, sentinel site, RGB signatures which 

in this experiment were developed in two stages in the 

interactive, smartphone app. The first stage consisted of two 

networks, backbone (ResNet, VGG, Inception, etc.) and 

region proposal network [RPN]. These networks ran once per, 

sentinel site, UAV sampled, capture point in the app, which 

subsequently rendered a set of region proposals [i.e., 

georferenceable district-level, geolocations in a feature, 

signature, interpolated, probability map which contained a 

forecasted, breeding site, larval habitat, positive for 

Anopheles larvae/pupae and its associated land cover]. In the 

second stage, the network in the app predicted bounding 

boxes and object class for each of the proposed regions 

obtained in stage1. Each proposed region was of different 

size, whereas fully connected layers in the network required 

fixed size vector to make robust predictions [e.g., exact 

DGPS centroid coordinates of the capture point, Anopheles, 

breeding site, aquatic foci]. The size of these proposed 

regions was fixed in the app by employing the Region of 

Interest [RoI] pool method. RoI pooling solved the problem 

of fixed image size requirement for sentinel site, seasonal, 

object detection networking. Here, the entire image fed a 

CNN model to detect RoI on the feature, Anopheles, larval 

habitat, signature LULC maps in the app. 

We fused deep convolutional networks into a single 

network in the interactive drone dashboard app. In so doing, 

the app was able to scale-up convolutional features of the 

georeferenced, UAV sensed, capture point, aquatic, 

Anopheles, larval habitat, RGB, indexed, grid-stratified, 
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LULC classified, sentinel site signatures while real time 

communicating with a unified real time network. Among the 

data exported included georeferenced DGPS geolocations of 

unknown, seasonal, scaled-up, district-level, breeding site, 

aquatic foci employing high resolution, gridded, satellite data 

[i.e., visible and near-infrared (NIR) bands from Wv-2 data] 

of an entomological malarious intervention site, Gulu District 

in Northern Uganda. This data was stratified based on an 

archived, trained, remotely retrieved, capture point database 

of multivariate sampled, RGB indexed, spectrotemporal, 

sentinel site signatures conceived in a real time ArcGIS. The 

RPN in the app utilized a fully convolutional network that 

simultaneously identified object bounds and objectiveness 

scores (i.e., 1=breeding site, 0= no breeding site) (e.g., a 

georeferenced An. funestus larval habitat in a cultivated 

papyrus swampland,) for every single, real time, UAV sensed, 

grid-stratifiable, land cover classified, image frame archived 

in the iOS app platform. The RPN was subsequently trained 

end-to-end to generate high-quality region proposals [i.e., 

georeferenceable, geolocations of unknown, district-level, 

Anopheles habitat breeding sites] in the interactive smart 

phone app. 

Further, a Machine learning Grid, Network portal was 

constructed in the iOS app platform for geoprocessing fused, 

grid-stratifiable seasonal, LULC classifiable, surface 

retrievable, RGB indexable, sentinel site, aquatic, Anopheles, 

larval habitat, reflectance wavelength, spectral data (e.g., 

capture point, drone imaged, turbid water, surface 

reflectance). We imported multiple, sentinel site, 

georeferenced coordinates into the web configurable, real 

time, interactive dashboard. Machine learning algorithms and 

video analog signature, sentinel site, real time, model outputs 

retrieved from the app (i.e., "training data') was subsequently 

employed to generate prognostications of unknown, district-

level, capture point, Anopheles, larval habitat, aquatic foci for 

implementing a real time IVM [Macro/Micro S&D] [e.g., 

drone larviciding a field verified, deep learning/CNN, 

seasonal, forecasted, agro-pastureland Anopheline breeding 

site]. 

Here an R-CNN mask was applied to the real time, 

seasonal, forecasted, grid-stratified, LULC, UAV sampled, 

surface sample, scaled-up, RGB indexed signatures in the 

dashboard app which included the video analog, sentinel site, 

georeferenced, aquatic, Anopheline, larval habitat, priori 

information extracted from the capture points. Our 

hypothesis was that geo-AI intelligence powered by machine 

learning automation in an operational, configurable 

dashboard, web app could aid in optimizing seasonal, 

sentinel site, UAV forecast, vulnerability, LULC mapping 

district-level, georeferenceable, aquatic, Anopheles, larval 

habitat, breeding sites using stochastically interpolatable, 

capture point RGB, signatures archived in an ArcGIS, neural 

network spectral library. Our second hypothesis was that real 

time, geo-AI machine and deep learning algorithms and 

remote sensing object detection algorithms embedded in an 

interactive smartphone dashboard app could cost-effectively 

and precisely implement a real time, district-level, IVM 

program [i.e., Macro and Micro S&D]. 

Hence, our objectives in this research were to 1). Design, 

deploy and validate a new real time tool using geo-AI 

algorithms operating on UAV videos in conjunction with an 

interactive dashboard smartphone app for real-time, forecast, 

sentinel site, signature, grid-stratifiable LULC, vulnerability 

mapping seasonal, Anopheles, larval habitat, breeding site, 

aquatic foci. 2). Test the scalability of the habitat signatures 

in the iOS app for detecting district-level, unknown 

georeferenceable habitats from drone video across seasons 

using an interpolated, RGB indexed, sentinel site, capture 

point, spectral signature 3). Implement an environmentally 

friendly intervention [i.e., Macro S&D] for modifying or 

destroying the drone sensed, field verified, spectrotemporal 

forecasted, Anopheles, larval habitats; and 4) Determine the 

effects of the intervention by using blood parasite levels 

[Micro S&D] in treated patients and suspected local 

population members in an entomological intervention site in 

Gulu District, in Northern Uganda which is one of the 

malarious regions globally. 

2. Methodology 

2.1. Study Site 

Gulu is a city in the Northern Region of Uganda. The 

regional headquarters are located in the city of Gulu, which is 

also the administrative capital of Northern Uganda. As of 

November 2019, the district was one of the eight districts that 

constituted the Acholi sub-region, the historical homeland of 

the Acholi ethnic group. The district is composed of Aswa 

County and the Gulu Municipal Council. The economic 

activity of 90 percent of the population in the district is 

subsistence agriculture. 

The district has been the location of much of the fighting 

between the Ugandan army and the Lord's Resistance Army. 

Over 90 percent of the population has returned to their villages 

after more than two decades of living in what was known as 

"Internally Displaced People Camps. As a result, little is 

known concerning the prevalence of malaria, mosquito, larval 

habitats in many peri-domestic, urban and rural, agro-

pastureland areas in Northern Uganda. This presented an ideal 

opportunity to test the performance of our real-time interactive, 

web-friendly, drone, dashboard, cell phone, signature 

architecture in an area where little is still known concerning 

the seasonal, abundance and distribution of Anopheles 

mosquitoes and the spatial epidemiology of the disease in 

urbanizing peri-domestic environments, making it conducive 

to being a study site for larval habitat, forecast signature, scale-

up mapping a capture point for implementing real time, 

district-level, IVM tactics [e.g., Macro and Micro S&D]. 

2.2. Malaria Transmission in Gulu 

In Gulu district, malaria is the leading killer disease among 

children <5 years. In 2015, the high intensity of malaria 

infection in Northern Uganda revealed a possible link 

between malaria and rainfall. However, available information 
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on the influence of climatic factors on malaria are scarce, 

conflicting, and highly contextualized, and therefore one 

cannot reference such information to malaria control policy 

in Northern Uganda, 

During the 10 year's retrospective study period, a total of 

2,304,537 people suffered from malaria in Gulu district. 

Malaria infection was generally stable with biannual peaks 

during the months of June-July and September-October but 

showed a declining trend after the introduction of indoor 

residual spraying. Analysis of the departure of mean monthly 

malaria cases from the long-term mean monthly malaria 

cases revealed biannual seasonal outbreaks before and during 

the first year of the introduction of indoor residual spraying. 

However, there were two major malaria epidemics in 2015 

following the discontinuation of indoor residual spraying in 

late 2014. Children <5 years of age were disproportionally 

affected by malaria and accounted for 47.6% of the total 

malaria cases [30]. 

2.3. Entomological Sampling 

Prior to the onset of this study, all households in the 

intervention an agro-village Akonyibedo in Gulu District 

were enumerated and mapped, which was used to generate a 

sampling frame for the entomology surveys. 

All households enumerated during the survey were 

assigned a unique number. A random sample of 120 

households was selected to generate a list of households to be 

approached for recruitment into the entomology survey. 

From the list, households were selected for participation in 

the human landing catches, pyrethrum spray, exit trap 

collections, and environmental measures (Figure 1). A 

separate list of random households was selected to generate a 

list of households to be approached for recruitment into the 

study being conducted under a separate protocol. The 

households of all local villagers 16-22 recruited into the 

cohort study were approached for selection for implementing 

Macro and Micro S&D, real time, IVM strategies. 

Mosquitoes were sampled using miniature CDC light traps 

(Model 512; John W. Hock Company, Gainesville, Florida, 

USA) positioned 1m above the floor at the foot end of the bed 

where a person sleeps under an ITN. Traps were set at 19.00h 

and collected at 07.00h the following morning by field workers. 

If the trap was set up in the intended house, the trap was 

moved to the nearest similar house after obtaining written 

informed consent from the head of household or an adult 

household representative. If the occupant did not spend the 

night in the selected room or the trap was faulty, the data were 

excluded from the analysis. The number was determined, and 

the presence of LLINs was recorded. Each night 

approximately 12 traps were set for 4 nights in each week. The 

120 cohort study houses were sampled every other week 

during the study. 

2.4. Pyrethrum Spray and Exit Trap Collections 

Randomly selected houses were sprayed using an aerosol 

of non-residual pyrethroids with a piperonyl butoxide 

synergist each month. These sprays were combined with exit 

traps placed over the windows of the houses to capture any 

escaping mosquitoes. In each site, 10 households were 

randomly selected for the spray collections from the 

entomology recruitment list generated from the enumeration 

database in each site. The same 10 households were sampled 

one day every 4 weeks. Written informed consent from the 

head of household or an adult household representative was 

obtained prior to conducting the pyrethrum spray and exit 

trap collections. Sampling schedules are shown in Table 1. 

Table 1. Sample timetable of monthly activities. 

Activity/site M T W T F 

Week 1 

Human landing catches (2 houses/site) X X X X  

Light trap installation (12-13 houses/night; 50/week) X X X X  

Processing of HLC specimens (identification, Sp ELISA)  X X X X 

Light trap catches (2 houses/night) X X X X  

Processing of LTC specimens (identification, Sp ELISA)  X X X X 

Exit trap installation (2 houses/site) X X X X X 

Exit trap collection (2 houses/site) X X X X X 

Pyrethrum spray catches (2 houses/site) X X X X X 

Processing of ETs & PSC (identification & BM ELISA)  X X X X 

Week 2 

Human landing catches (2 houses/site) X X X X  

Light trap installation (12-13 houses/night; 50/week) X X X X  

Processing of LTC specimens (identification, Sp ELISA)  X X X X 

Week 3 

Human landing catches (2 houses/site) X X X X  

Light trap installation (12-13 houses/night; 50/week) X X X X  

Larval surveys of study site X X X X X 

Week 4 

Human landing catches (2 houses/site) X X X X  

Light trap installation (12-13 houses/night; 50/week) X X X X  
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Figure 1. Sampling frame for random selection of household for entomology surveys in Akonyibedo Village, Gulu, Uganda. 

2.5. Methods 

Collection took place between 06.00-08.00h. The number of 

children and adults who slept in the house the previous night 

was determined and the presence of LLINs was recorded. 

White sheets were spread on the floor and over the furniture in 

the house. Two field workers, one inside the house and one 

outside, sprayed around the eaves with 0.025% pyrethrum 

emulsifiable concentrate with 0.1% PBO in kerosene. The 

fieldworker inside the house then sprayed the roof and walls. 

The house was closed for 10 minutes, after which the white 

sheets were brought outside (where there is sufficient light), 

and dead mosquitoes were collected from the sheets and 

transferred to the field laboratory on moist filter papers in Petri 

dishes for identification and processing. 

To collect house-leaving mosquitoes, window exit traps 

were set at 18.00h and collected between 06-07.00h the 

following morning. Mosquitoes from each trap were put into 

paper cups separately and transferred to the field laboratory 

for processing. Mosquitoes were provided with sugar 

solution for 12 hours from the time of collection. Parity 

dissections were performed on 500 of each species each 

month at each site. 

2.6. Larval Surveys 

The study site was surveyed for water bodies each month. 

Site coordinates were recorded using a Garmin eTrex 10 

Worldwide Handheld GPS Navigator. Purposeful sampling was 

conducted to maximize the collection of the aquatic stages of 

mosquitoes using a 350-ml dipper (Clarke Mosquito Control 

Products, Roselle, IL). At each georeferenced, sentinel site, 

Anopheline, aquatic habitat, 10 dips were made in places likely 

to harbor mosquito larvae, such as around tufts of submerged 

vegetation or substrate, edges of water bodies, and around 

floating debris. In extensive water bodies, dipping was carried 

out over a 100-m walk. Larvae were classified either as 

Anophelines or Culicines. Anopheles larvae were stored in 100% 

ethanol, which was refreshed on reaching the laboratory. 

Randomly selected subsamples of Anopheline larvae selected 

during the routine mapping of the area sand sibling species of 

the An. gambiae complex was identified by amplification of 

ribosomal DNA using polymerase chain reaction (PCR). 

The depth of water of an aquatic, sentinel site, Anopheles, 

larval habitat was measured from different places depending 

on the size of the habitat using a meter stick, and the average 

depth was taken. The distance to the nearest homestead was 

measured using a tape measure for less than 100 m and 

estimated if more than 100 m. Distance was then categorized 

into four classes: (1) ≤ 100 m, (2) 101 to 200 m, (3) 201 to 

300 m, (4) 301 to 400 m. Surface debris, presence of algae 

and emergent plant coverage were determined based on 

visual observation. Vegetation cover was visually observed 

and expressed as open (no vegetation), tree (for the presence 

of large trees within a range of 10–15 m where shade and 

foliage could reach), and shrub (woody plants smaller than a 

tree within 10–15 meters). Habitat perimeter was measured 

using a tape measure and classified as < 10 m, 10–100 m, 

and > 100 m. Habitat stability was expressed in terms of the 

length of time the habitat contained water after the rain. A 

habitat was considered temporary if it held water for 2 weeks 

or less and permanent if it held water for more than 2 weeks 

after rain. Though larval sampling was taken on monthly 

basis, the area was inspected for the presence or absence of 

rain continuously. Turbidity was measured by placing water 

samples in glass test tubes and holding them against a white 

background, and categorized into three levels: low, medium, 

and highly turbid. Light intensity was visually categorized as 

sunlit if the habitat received full sunlight that could occur 

throughout the day, otherwise the site was described as 

shaded. The substrate type was categorized as mud, stone if 

the pool was lined with stones that were large in size (rocks 

generally larger than 10 cm in diameter) and gravel when the 

stones were small in size but larger than sand. Water 

temperature was recorded using a water thermometer at the 

time of collection, and pH was measured using pH indicator 

paper. Rainfall of the study area during the study period was 

obtained from Ugandan National Meteorological Agency. 

Larval breeding habitats and a number of immature 

Anopheles mosquitoes sampled were described using tables. 

Correlation analysis was used to investigate the relationship 

between pH, temperature, and water depth to the Anopheles 
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larval density. Anopheles larval density was determined as 

the number of Anopheles larvae (early or late) divided by the 

number of dips taken from each larval habitat. Larval density 

was log-transformed log10 (x + 1) to improve the normality of 

distribution. Multiple regression analysis was used to identify 

the environmental variables associated with the occurrence of 

Anopheles larvae. Mann–Whitney U test was used to 

compare samples with two variables; the presence of algae 

(presence or absence), habitat permanency (temporary or 

permanent), surface debris (present or absent), the intensity 

of light (sunlit or shaded), and water movement (still or 

flowing). Kruskal–Wallis H test was used to compare 

samples with more than two groups: water turbidity, water 

perimeter, distance to the nearest house, canopy cover, 

emergent plant coverage, habitat type, and substrate type. 

These non-parametric tests were used to compare larval 

densities from sites with different habitat characteristics. 

Data were analyzed using IBM SPSS statistical for Windows 

(IBM corp., Armonk, NY), version 20.0. Values were 

considered significantly different if p < 0.05 for all the tests. 

A large number of specimens were collected from the 

different aquatic, sentinel sites, larval habitat sites, and from 

the different collection methods. All Anopheles were 

identified taxonomically to species level. To process the 

mosquitoes, we implemented a systematic procedure for 

labeling and recording the specimens, which included the 

following information: 1) area where the samples were 

collected, 2) house number (which was linked to GIS data), 3) 

method of collection, 4) date of collection, and 5) the serial 

number of the specimen. When processing the specimens, 

labels were written in pencil and placed with the relevant 

specimens in Eppendorf tubes, and similar information was 

recorded in a register for easy data entry and cross-checking. 

2.7. Remote Sensing Protocol 

Drone surveys were carried out using a DJI Phantom 4 Pro 

(DJI, Shenzhen, China) quadcopter fitted with a DJI 4K 

camera (8.8 mm/24 mm; f/2.8; 1'' CMOS; 20 MP) for 

conventional RGB signature, capture point, LULC imagery 

collection and a 3DR Solo (3D Robotics, California, US) 

quadcopter fitted with a Parrot Sequoia sensor (Parrot, 

France) which is composed of single-band cameras (Green, 

Red, Red Edge and NIR of 1.2 MP for multispectral imagery 

collection. The flight plan was programmed with Pix4D 

Capture app in an iPad Mini 4 (Apple, California, US). The 

connection between the controller and DJI Phantom 4 Pro 

and 3DR Solo was set up using DJI GO 4 app and 3DR Solo 

app, respectively. For approximately 30 minutes, the drone 

flew over the entomological, intervention site using the high-

end, radio-controlled, and camera-equipped for urban, agro-

village and rural pastureland explorations. The drone was 

integrated with handheld devices to greatly enhance its 

capabilities for aerial footage. The multangular drone camera 

within the kit recorded, stored, and managed the capture 

point, seasonal, georeferenced, sentinel site, signature data in 

the drone dashboard spectral library. A copy of the sentinel 

site, Anopheline, larval habitat LULC data, and spectral 

imagery was stored in the on-flight computer and 

concurrently transmitted down to the ground stations via Wi-

Fi communication in real-time employing the cloud-based, 

DroneDeployTM platform DroneDeploy software. 

2.8. Orthomosaic Construction 

The photogrammetric processing (e.g., Anopheline, larval 

habitat, sentinel site, reflectance, surface measurements 

based on photographs) was conducted in AgiSoft Photoscan 

Pro (https://www.agisoft.com). The resulting UAV imagery 

was imported into Photoscan and processed to construct an 

orthomosaic (i.e., georeferenced, overlapped, sentinel site, 

LULC images with correction for topographic distortions) for 

the entomological, intervention site. The position of the 

drone at the time of image capture for each Anopheles, larval 

habitat, sentinel site photo was recorded automatically by the 

on-board GPS; hence the orthomosaic was georeferenced 

without the need of Ground Control Points (GCPs) [see 

Figure 2]. 

The standard procedure used was: photo-alignment 

(accuracy: highest; generic preselection active, reference 

preselection active; Keypoint limit: 80,000; adaptive camera 

model fitting active); (2) dense cloud building (quality: high; 

depth filtering: aggressive); (3) elevation model (geographic 

projection using; resolution of 0.1 m and 0.02 m per pixel for 

the RGB and multispectral images respectively; interpolation: 

extrapolated; all georeferenced, Anopheline, larval habitat, 

capture point classes to generate digital surface model); (4) 

orthomosaic building (input surface:; blending mode: mosaic; 

resolution of 0.1 m and 0.02 m per pixel for the multispectral, 

georeferenced, aquatic, larval habitat, sentinel site, land 

cover UAV seasonal, images respectively. 

Once the drone signatures were captured, it was real-time 

transferred into the ArcGIS-AI Interface Kit™, where a 

stochastic interpolation algorithm ran the signature over the 

entire district using commercial high-resolution satellite data 

(46 cm Wv-2, visible and NIR wavebands) to identify 

unknown larval habitat aquatic foci at the entomological, 

intervention site [Figure 3]. This real-time scaling up RBG 

signature, sentinel site, Anopheline, larval habitat, grid-

stratified, LULC mapping was based on the Faster R-CNN 

algorithm being applied to real-time georeferenced, capture 

point, sample, estimator datasets which included DGPS 

indexed component video data. The analog signatures and 

priority information extracted [Figure 4] from the capture 

points were used for optimizing seasonal, field control, 

sentinel site, imaging and entomological sampling operations. 

For example, when a user (e.g., trained local district-level, 

vector control officer) submitted a query of Anopheles larval 

habitats and video clip, the system retrieved a ranked list of 

visually similar district, aquatic, larval habitat types with 

GPS coordinates in real-time. 
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Figure 2. Supervised classification of 7 digital surface model classes identified in a drone image: open water, emergent aquatic vegetation, agro-pond, 

trees/bushes, grass, bare soil, untarmacked roads/paths, and agriculture; the sentinel site markers are delineated in blue font. 

 

Figure 3. RGB sentinel site signatures in the spectral histogram a) An arabiensis rice tiller habitat b) An. gambiae hoof print habitat c) An. funestus river 

stream bed habitat d) An. gambiae commercial ditch habitats e) temporary An. gambiae s.l. rain pools f) An. funestus cultivated swamp. 
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Figure 4. Spectral histogram RGB sentinel site signature of a georeferenced, 

sentinel site. An. gambiae commercial ditch habitat. 

Leveraging USFs research team's expertise, the app 

interface and experiences were built employing the Unity 

game engine software and Vuforia 6 SDK. The Vuforia Area 

Target Creator application allowed us to easily generate an 

Area Target using a depth-enabled mobile device, [iPads, and 

iPhones]. Vuforia is an augmented reality software 

development kit (SDK) for mobile devices that enables the 

creation of augmented reality applications. [https://liu.diva-

portal.org/smash/get/diva]. This developer used computer 

vision technology to recognize real time drone images and 

3D objects. This image registration capability enabled us to 

position and orient virtual, Anopheline, larval habitat objects, 

[e.g., canopy gap understory and midstory vegetation, 

vertical foliage distributions etc.] in relation to the sentinel 

site, breeding site, aquatic foci when they were viewed 

through the drone camera of a mobile device. The virtual 

object tracked the position and orientation of the habitat 

image in real-time so that the viewer's perspective on the 

object corresponded with the perspective on the 

georeferenced, mosquito habitat target. 

3. Results 

The results of larval sampling and the types of larval 

habitats that were productive in the study area are 

presented in Table 2. Eight sentinel habitat types were 

identified in the entomological intervention study site, 

including borrow pits, hoof prints, rain pools, pools at 

river edges, pools in the bed of drying river, rock pools, 

tire tracks, and swamps. 

Table 2. Density of Anopheles larvae in different sentinel site habitat types in Akonyibedo village. 

Habitat type (n) Total larval count No. of larvae/dip (Mean ± se) Total pupal count No. of pupae/dip (Mean ± se) 

Borrow pit 219 14.3±8.6 8 0.5±0.1 

Hoof print 193 5.5±1.2 8 0.2±0.1 

Rain pool 712 5.5±1.5 84 0.6±0.2 

Commercial road ditch 3063 13.0±2.1 148 0.7±0.2 

Rice tillers 704 35.2±7.9 70 3.5±0.8 

Agro-Pond 1038 32±2.7 51 2.1±0.7 

Rock pool 228 6.5±3.4 27 0.6±0.3 

Tire track 313 6.4±3.2 22 0.5±0.2 

Swamp 79 2.1±0.2 13 0.3±0.1 

Quarry 124 19.4±4.1 71 2.2±0.3 

* Values in italics for mean larval and pupal density indicate mean larval or pupal density of each sentinel study site 

For about 25 minutes, a DJI Phantom 4 Pro drone, high-

end, radio-controlled, and camera-equipped, flew over 

multiple georeferenced, sentinel sites as designated by an 

entomological vector field control team using the interactive 

iOS app. The dashboard was integrated with handheld 

devices to greatly enhance its capabilities for aerial footage 

and a multangular camera within the kit that recorded, stored 

and managed the retrieved capture point signature, gridded, 

LULC reflectance data. A copy of the larval habitat data and 

spectral imagery was stored in the on-flight computer and in 

the app, which was concurrently transmitted down to the 

ground stations via Wi-Fi communication in real-time 

employing the Drone-DeployTM software. ArcGIS 

Configurable Apps provided a suite of app templates that 

allowed creating a web app from the signature sentinel site 

LULC maps and from the UAV scenes without having to 

write a code. By leveraging an app template and choosing a 

few options, we were able to interact with the UAV real time 

maps with the field sampled entomological data. 

For testing, we flew the UAV over the sentinel sites. 

During these wayward flights, 11 videos with a total of 25 

minutes were collected. The total number of frames extracted 

was 1,058, with 82% of them containing at least one potential 

Anopheles larval habitat. 

Real-time, web-based, interactive, geospatial analytical 

geoprocessing tools within the drone dashboard were also 

employed to carry out inspections of reflectance, anomalous, 

seasonal, landscape characteristics of potential Anopheles 

larval habitats, or potential intervention sites using video 

analog, LULC data with seasonal, georeferenced, sentinel 

site, capture point, aquatic signatures previously obtained. 

These LULC types were then labeled [Figure 5]. 

The data was exported in real-time to a handheld device 

(e.g., tablet, iPad, mobile phone); so that control personnel 

could view the multi-directional footage using a mobile 

Apple handheld devices (i-Pad) which provided DGPS 
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coordinates. All habitat LULC objects and their signatures 

were easily identifiable. 

 

Figure 5. Selected experimental Anopheles larval habitat signatures 

assembled in real-time from multiple experimental georeferenced drone 

sensed sentinel site, capture points. 

We then tested the scalability of the ArcGIS-AI dashboard 

iOS app for detecting potential peri-domestic aquatic habitats 

from drone video capture point in a sub-county geolocation 

[Akoyibedo village] in Gulu District, across seasons. Once 

the signatures were captured it was real-time transferred into 

the ArcGIS-AI Interface Kit™, where an interpolation 

algorithm ran the signature over the entire district using 

commercial high-resolution satellite data (i.e., 46-centimeter 

Wv-2 band data) to identify previously unknown aquatic, 

Anopheles larval habitats. This real-time, scale-up, signature 

mapping of the capture point, Anopheline, larval habitats was 

based on the Faster R-CNN algorithm being applied to real-

time imaged, sentinel site, seasonal, signature, sample 

datasets which included the RGB component video. 

. Drone images were analyzed to predict potential 

Anopheline larval habitats first in village and then throughout 

the district, using the app [see Figure 6 a, b, c and d]. We 

tested the scale-up of a georeferenced capture point by 

applying the previously discussed methods, including 

validation, at 65 sites across Gulu district during each of the 

three seasons. Of the 65 sites predicted to be suitable by the 

app, a criterion for success here was that 65 of the breeding 

sites should be found to contain Anopheles larvae (95% 

Confidence interval (CI) 100%). 

 

Figure 6. a) Drone classified kriged sentinel site signature map of an An. gambiae s.l. agro-pond RGB habitat signature using Wv-2 data b) agro-pond 

habitats in Gulu district from scaled up village capture point breeding site c) identified habitats with larvae and without larvae generated by interpolating the 

signature of Anopheles larvae over the agro-pond drone predicted habitats d) Field validated habitat targeted for real time drone larviciding. 
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These unique identifiers of aquatic habitat spectral 

signatures were then used to predict Anopheline larval 

habitats along un-surveyed district-level regions. We tested 

the scale-up of the ArcGIS-AI dashboard app from drone 

video to the district level across seasons using Wv- 2 30-

centimeter data. We were able to then field verify unknown 

Anopheline breeding sites, capture points [Figure 7]. 

 

Figure 7. Typical scaled-up district-level Anopheles gambiae s.l. breeding habitats in Gulu district predicted by interpolated sentinel site signatures in the 

drone AI-GIS. 

Weekly baseline data collection for both epidemiological 

and entomological data were collected in January 2021, Seek 

and Destroy intervention was carried out in February and 

March; and weekly surveillance was conducted from April up 

to June 2021. To confirm that the Anopheline larval habitat 

modification process described above could be a viable tool 

against malaria, both entomological and epidemiological 

baseline data for adult mosquito biting rates were collected 

for control reference purposes, which was subsequently 

compared to data post-intervention. Our preliminary results 

conducted in Akonyibedo village showed that from three 

weeks to two months after the intervention, a drastic decline 

in the number of indoor resting adult Anopheline mosquitoes 

occurred, based on routine monthly pyrethrum spray catch 

(PSC) entomological surveillance. Two months after the S & 

D intervention approach, there was a steady decline in blood 

malaria parasite positive cases as examined during the 

monthly routine community malaria test and treat outreach, 

conducted by our joint teams together with the health staff 

from the local health facility. 

For the entomological surveillance baseline data, still 

within the identified high adult Anopheles biting and blood 

malaria positive parasite areas, 120 households were 

randomly selected for PSC procedures to collect adult indoor 

resting Anopheles mosquitoes. Using knockdown insecticides, 

groundsheets, and dissecting microscopes, Mr. Denis Loum, 

a local entomologist and district control officer, identified, 

classified, and established species population density and 

examined sporozoite rates in all the collected indoor-resting 

adult Anopheline mosquitoes for baseline data before the 

intervention, then repeated this procedure after the 

intervention to compare results, 

For epidemiological surveillance, a field team visited the 

local nearby health facility serving the intervention 

community; for collecting out-patient malaria case reporting 

data and to tease out the areas within the community with the 

highest malaria cases on record. With the help of district 

medical entomologists and laboratory personnel, Dr. Martha 

Kaddumukasa, identified high malaria case areas within the 

intervention community and conducted random blood 

samplings, categorically, with varying age and group clusters. 

Blood samples were taken and analyzed for the rampant 

presence of malaria blood parasites. With a collective 

approach, in line with Uganda's Ministry of Health of Test 

and Treat malaria policy, all confirmed positive malaria cases 

were treated (as an integral outreach program usually 

included on the local health facility work plan). This data was 

recorded as a baseline before the S & D approach 

intervention, which was then compared with fresh data after 

the intervention. All malaria-related seasonal parameters, 

including entomological, parasitological, socioeconomic, and 

case management data, were tracked by household and 

mosquito source identifier numbers. 

Water bodies were identified in the drone sensed imagery, 

as well as ancillary information for implementing real time 

larval control activities [e.g., Macro S&D, which involves 

entirely burying breeding site, aquatic, Anopheles foci such 

as potholes, commercial roadside ditches, temporary rain 

pools, footprints, tire tracks and other household habitats 

with soil substrate]. The soil substrates were effective for 

approximately 120 to 150 days, but a secondary validation 

was applied employing the ArcGIS-AI dashboard app within 

1 week of treatment. Our drones have a sensor-controlled 

drop-down appendage which was controlled by the cell 

phone app, which aided in optimally targeting and treating 

exact geolocations of georeferenced, larger, breeding sites, 

[e.g., applying.05mg of SAFE insecticide per inoculation to 

only the open sun lite exposed sides of a 10meter (m) x10m, 
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rock pit, quarry, seasonal, Anopheline, aquatic, habitat foci 

where the larvae/pupae reside] [Figure 8]. The real time 

control technique was extremely cost-effective as we applied 

only minimal amounts of the insecticide (SAFE) to the real 

time, drone mapped, field verified, remotely targeted, 

breeding sites [Figure 9]. [e.g., inoculations only on 

permanent or semi-permanent, uncanopied, pre-flooded 

tillers in a mature paddy field hence avoiding intermittent, 

dry post-harvested foci] with surgical precision as compared 

with non-real-time, drone applied, blanket treatment, 

insecticide spraying since we applied the SAFE at a height 

less than a foot [i.e., 0304m] (no spillage, no droplet drift) 

above the targeted habitat which allowed implementing 

Macro S and D [Figure 10]. 

 

Figure 8. Targeted spray in an agro-field Anopheles larval habitat in Akonibedo village. 

 

Figure 9. UAV Maps of Targeted spray in an agro-field Anopheles larval habitat in Akonibedo village. 

Thereafter we tested the scalability of the smartphone, 

dashboard app for detecting potential aquatic Anopheles 

habitats from drone video using high-resolution Wv-2 46 

centimeter, gridded, [270 m x 270m] satellite data. Field 

validation revealed that of 65 predicted breeding site habitats, 

all contained Anopheles larvae/pupae revealing a sensitivity 

and specificity approaching 100% for each season. 

We continued to signature, drone seasonal, forecast map 

all treated sub-county, capture point, district-level, 

intervention sites every 7 -14 days to establish if new aquatic 

foci had occurred and treated those habitats. In so doing, we 

were able to ascertain valuable, district-level, seasonal, 

entomological information [e.g., georeferenced routes to a 

large, algae, matted cultivated, swamp habitat adjacent to an 

agro-pastureland village homestead population; precise 

drying temporal, sample frames of lagoons, transient pools 
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and flooded, man-made hole, sentinel sites, etc.] for optimal, 

real time, seasonal, drone vulnerability signature forecast 

mapping and treating Anopheles, capture point, breeding site, 

aquatic foci. In 31 days, post-Macro and Micro S&D 

intervention there was zero vector density, indoor, adult, 

female, Anopheles count as ascertained by PSC at the 

intervention site [Tables 3 and 4]. After a mean average of 62 

days, blood parasite levels revealed a mean 0 count in treated 

malaria patients [Figures 13ab and c, Figure 14 a and b]. 

 

Figure 10. A real time UAV, Anopheline habitat mapping for implementing "Seek and Destroy" (a) An RGB video analog seasonal Anopheles habitat captured 

in a UAV spectral library (b) Drone captured data transmitted via Wi-Fi hot spot for scaling up to a larger epi-entomological intervention site employing a 

hand held device (c) remote data synchronization into an Internet Cloud d) time series habitat spectral signature (e) R-CNN model constructed employing all 

annotated images (f) Real time ArcGIS cartographic data analysis to locate sources of breeding sites (g) Convolution neural network for assigning learnable 

weights to various habitat objects in capture point mages h) aerial habitat detection (h) mapped unknown Anopheline foci by GPS locations (j) mobilization of 

local trained villagers for conducting "Seek and Destroy". 

Table 3. Pre and Post Seek and Destroy Intervention in Akonyibedo Village. 

Monthly adult mosquito entomological surveillance data (Taken from 120 households) 

Year Month Female An. Gambae s.l Female An. Funestus Female Culicines Activity 

 

January 412 288 113 Baseline 

February 460 312 97 
Intervention 

March 681 433 69 

April 12 22 55 

Entomological surveillance May 0 3 41 

June 0 0 12 



106 Benjamin George Jacob et al.:  Geospatial Artificial Intelligence Infused into a Smartphone Drone  
Application for Implementing 'Seek and Destroy' in Uganda 

 

Figure 11. Monthly Entomological Surveillance Data taken from 120 housholds. 

Table 4. Pre and Post S & D intervention in Akonyibedo village. 

Monthly Malaria tested and treated cases (Taken throughout the village) 

Year Month Total tested Positive and treated Activity 

2021 

January 2459 1984 Baseline 

February 3881 2560 
Intervention 

March 2777 1955 

April 1233 134 

Epidemiological surveillance May 971 21 

June 533 2 

 

Figure 12 Montly malaria blood parasite tested and treated cases taken throughout the village. 

   

Figure 13. ab and c Adult Anopheles mosquitoes collected using PSC capture method, being identified in a local lab, in Akonyibedo village, Gulu District-

Northern Uganda. 

  

Figure 14 Epidemiological Surveillance: Local Entomologist conducting community Rapid Test Diagnosis for Blood malaria parasite prevalence in 

Akonyibedo village June 26, 2021. 
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4. Discussion 

Our real time technology using a drone-mounted video 

RBG camera allowed creating a sentinel site signal for 

efficiently forecast mapping the precise geolocation of 

Anopheline mosquitoes in their most concentrated stages, the 

aquatic habitat. Coupled with this capability, we developed a 

means to employ this signature to geolocate other similar, 

sentinel site, LULC stratified, capture points over the flight 

path of an unmanned aerial vehicle [e.g., a drone flight time 

of 10 minutes over a hectare of mature paddy field in Gulu 

revealed > 5000 previously unknown, seasonal, aquatic, 

Anopheles microhabitat, larval, breeding sites. The drone was 

integrated with handheld devices to greatly enhance its 

capabilities for aerial footage. The multangular camera 

recorded, stored, and managed the capture point, signature 

LULC, classified data. A copy of the larval habitat data and 

spectral imagery was also stored in the on-flight computer 

and concurrently transmitted down to the ground stations via 

Wi-Fi communication in real-time employing the Drone-

DeployTM software. 

We built an interactive, configurable, geo-AI, web-based 

dashboard, iOS app for optimizing forecast, signature, 

vulnerability mapping, sentinel sites and for real time 

identifying and treating unknown capture point, Anopheles, 

breeding site, aquatic foci. We were able to create wayward, 

maps using the LULC data exported from the DJI Phantom 4 

Pro drone, high-end, radio-controlled, and camera-equipped 

repository database in the dashboard app. Web-based, 

interactive, spatial analytical geoprocessing tools in the app 

was subsequently employed to carry out inspections of 

reflectance, capture point, anomalous, seasonal, landscape 

characteristics of potential, Anopheles, larval habitats, or 

potential intervention sentinel sites using video analog data 

employing the archived, RGB indexed, capture point 

signatures. 

We then tested the scalability of the real time, retrieved, 

sentinel site, RGB signatures from the georeferenced capture 

point to identify unknown, seasonal, district-level, Anopheles, 

larval habitat, aquatic foci using the web interactive geo-AI 

app. The app ran a trained deep learning model on an input 

raster to produce a feature class containing various sentinel 

site, larval breeding site, capture point objects [e.g., rice 

tillers in a post-harvest/fallow, An. arabienis s.s. paddy 

habitat] which was subsequently scaled out from the 

georeferenced capture point to identify unknown breeding 

sites at the district level. The features were bounding boxes 

or polygons around the predicted, district-level, aquatic 

habitats in the app. This tool required a model definition file 

containing trained model information. The real time, UAV 

sensed, RGB signature, sentinel site model was trained using 

a third-party training software [i.e., PyTorch]. The model 

definition file was an Esri model definition JSON file (.emd) 

which contained the path to the Python raster function which 

called to process each sentinel site, aquatic, Anopheles larval 

habitat and the trained binary deep learning model file in the 

configurable, smartphone app. We trained the deep learning 

models using sensitive (5-minute maximum wayward UAV 

flights and processing of RGB signature) over a seasonal 

sampled, georeferenced, Anopheles, aquatic, larval habitat, 

capture point and derived information products [e.g., 

forecasted, district-level maps of potential, unknown, 

seasonal breeding site aquatic foci] using the ArcGIS Pro and 

ArcGIS API for Python and scale up the processing of 

ArcGIS Image Server in the app. Detection geoprocessing 

tools [e.g., convolutional neural networks (R-CNN, Region-

Based Convolutional Neural Networks], Fast R-CNN and 

Deep Learning tools in ArcGIS Pro long with other infused 

geo-AI remote sensing, object-based algorithms in the app 

were able to precisely, forecast, signature map seasonal, 

Anopheles, aquatic, larval habitat geolocations by scaling up 

a database of UAV imaged, sentinel site, capture point, 

georeferenced signatures using Wv-2 data. 

Of the 65 sites in the entomological intervention site 

predicted to be district-type breeding site, aquatic habitats by 

the model, all (100%) were found to contain Anopheles 

larvae during field verification. In contrast, none of the 50 

sites not predicted by the model but deemed to be potential 

district-level habitats by the entomologist accompanying the 

verification team contained Anopheles larvae. Together, these 

data suggested that the real time, UAV, signature, 

interpolation model constructed in the configurable, 

interactive, smartphone app exhibited a sensitivity and 

specificity approaching 100% for the prediction of Anopheles 

larval sites in Gulu District. 

Simulation studies in a real time UAV platform may be 

used to generate a real time, LULC classifiable, drone sensed, 

RGB, sentinel site, signature, iterative, interpolative 

methodology employing geo-AI technologies infused into a 

web configurable interactive smartphone app for optimally 

identifying unknown, seasonal, aquatic, Anopheles (gambiae, 

s.l. funestus s.s. and arabiensis s.s) larval habitats throughout 

districts in Uganda and in other countries where malaria is 

endemic. We integrated external deep learning model 

frameworks using PyTorch in the smartphone app; in so 

doing, we were able to employ a model definition file 

multiple times to detect seasonal LULC change over time for 

optimally identifying district-level, seasonal, aquatic, 

Anopheline, larval habitat breeding sites. We were able to 

generate a polygon feature class in the app showing the 

geolocation of detected unknown habitats at the district level 

using additional satellite workflow analyses. A deep learning 

model package (.dlpk) in the app contained the files and data 

required to run deep learning inferencing tools for object 

detection and for remote image classification. The package 

was uploaded to the portal in the app as a DLPK item and 

used as the input to multiple deep learning raster analysis 

tools for parsimoniously stochastically interpolating the 

sentinel site signatures. The creation and export of training 

samples were all conducted in the app employing standard 

training sample, real time, UAV dashboard, 3-D generation 

tools. The deep learning, entomological, real time, forecast-
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oriented, RGB signature model was trained with the PyTorch 

framework employing the Train Deep Learning Model tool. 

Once the UAV model was trained, we used an Esri model 

definition file (.emd) in the app to run the geoprocessing 

tools to detect and classify the seasonal, georeferenced, 

sentinel site, larval habitat, LULC stratified, capture point 

features in the satellite imagery for identifying unknown, 

scaled-up, district-level, aquatic, Anopheles habitats. 

It is important to note that when installing the deep 

learning framework Python packages into a real time iOS app 

platform, an error can occur when adding the Esri model 

definition file to the geoprocessing tools. Fortunately, 

ArcGIS is an open, interoperable platform that allows the 

integration of complementary methods and techniques in 

several ways: through the ArcGIS API for Python, the ArcPy 

site package for Python, and the R-ArcGIS Bridge. Here 

ArcGIS API for Python integration allowed generating a 

configuration file in JSON format that provided a dataset of 

sentinel site, UAV sampled, Anopheles, larval habitat, 

interpolative, signature parameters for attaining deep learning 

model inference in ArcGIS. The EMD included model 

properties, and metadata which was accessible from the 

Python raster function (e.g., the location of the trained 

signature model file). 

With the ArcGIS Image Analyst extension, an 

entomologist, clinician or, other research investigator may 

construct entire deep learning workflows with real time, 

UAV imaged, georeferenced, seasonal, aquatic, insect, vector 

arthropod, larval habitat, signature imagery in ArcGIS Pro. 

The geoprocessing tools in ArcGIS Pro can prepare UAV 

sentinel site, RGB, imagery training data, and then conduct 

scaled-up, capture point, real time, habitat detection using 

CNN architecture for geometric matching, field verifying and 

treating breeding sites, seasonal aquatic, vector arthropod 

foci using high-resolution pixel classification in a 

smartphone app. By combining powerful built-in tools with a 

machine learning package [e.g., scikit-learn and TensorFlow 

in Python], spatial validation, geoenrichment, and 

visualization of scaled-up, sentinel site, spectrotemporal 

stochastically interpolatable. capture point, aquatic, 

Anopheles, larval habitats can be sentinel site, signature 

forecasted for cost-effectively treating geolocations of 

gereferenceable, unknown district-level, breeding sites using 

a web-configurable app. For example, TensorFlow may 

provide a collection of workflows to develop and train UAV 

sensed signature models using JavaScript, which may easily 

be deployed in the cloud, on-prem, in the browser, or on a 

handheld device regardless of language employed for 

remotely targeting exact natural and clear, water bodies such 

as Anopheline riverbed pools with sandy substrates and still 

water. 

We created a large spectral library of georeferenced, 

aquatic, Anopheles, larval habitat, capture point, sentinel site, 

RGB signatures as well as for other vector species of 

mosquitoes [Culex quinquefasciatus, Aedes aegypti] in Gulu. 

We generated data-driven attribute transformatios using deep 

feature spaces in the smartphone app for archiving the 

breeding site, sentinel site, LULC classified capture point, 

seasonal, UAV retrieved RGB, spectral signatures. We can 

now go into an unknown district-level area and locate the 

precise geolocations of productive aquatic, seasonal habitats 

where vector larvae are clustered for prioritizing treatment 

[i.e., real time drone larviciding target site of a an irrigation 

canals, seepage from water pipes, neglected wells, artificial 

containers, man-made ditches etc.]. We have also added the 

appropriate means within this real time IVM tool to deliver, 

with surgical precision, an environmentally friendly control 

tactic (e.g., burying and monitoring of a real time, drone 

mapped, field-verified, temporary, sunlit, clear and shallow, 

fresh water, An. gambiae s.l.,. isolated habitats occurring in 

uncultivated swamp margins], i.e., Macro S&D). An added 

benefit of our unique, geo-AI, real time, UAV, habitat 

signature, forecasting and delivery system is that it can be 

used to scale up to eco-geographically locate with precision 

productive, seasonal, capture point, Anopheles, breeding site, 

aquatic foci from satellite data. Deep convolutional neural 

networks embedded in an interactive smartphone app can 

perform spectral classification tasks such as habitat sentinel 

site, visual object categorization. This allows a smartphone 

device to establish the occurrence abundance and distribution 

of all productive, Anopheles, mosquito habitat breeding site 

geolocations seasonally [e.g., rain pools and water bodies 

created by the climate change, flooded irrigation canals, 

seepage from water pipes, neglected wells, artificial 

containers, man-made ditches etc.] at the district, county, 

state, provincial or regional, wide level. The expansion of 

sentinel site, drone and satellite sensed, real time, capture 

point, aquatic, Anopheles, larval habitat, RGB indexable 

signatures over time due to seasonal or climatic changes 

expands the opportunity for planning the complex logistical 

requirements for real time IVM operations and assessments 

of malaria transmission risks to humans [e.g., Micro S&D for 

determining the quantitative content of parasites in the blood]. 

5. Conclusion 

Integration of geo-AI, machine learning and deep learning 

ArcGIS geprocessing neural network application tools in a 

web-configurable smartphone app, developed through this 

research permitted novel integration of UAV sensor 

technology for real time, LULC mapping unknown, 

georeferenced, capture point, sentinel site, aquatic, Anopheles, 

larval habitat, breeding sites. We constructed and archived 

surface larval habitat, sentinel site, RGB signatures using 

autonomous sampling strategies in the smartphone app. Local 

vector control officers in Gulu District were trained how to 

build the app for broad-scale district-level, UAV surveillance 

of signature scaled-up, individual and clustering, capture 

point, georeferenced, Anopheles, sentinel site habitats,. The 

real time UAV, geo-AI technologies in the dashboard 

interactive iOS app captured the real time, video analog, 

sensed, surface, signature sampled, reflectance data and 

identified LULC properties of unknown breeding sites 

throughout district-level intervention sites by stochastically 
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interpolating the signature data using sub-meter resolution 

satellite gridded data. The app recorded the capture point 

geolocations of a georeferenced, seasonal, aquatic, 

Anopheline, breeding site, larval habitat, capture point 

geolocation as a pin on a predictive map in seconds which 

was subsequently field verified by local vector control 

officers at the entomological intervention site. In 31 days, 

post-Macro S&D intervention, there was zero vector density, 

indoor, adult, female, Anopheles count as ascertained by PSC 

at the intervention site. After a mean average of 62 days, 

blood parasite levels (Micro S&D) revealed a mean 0 count 

in treated malaria patients. 
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